
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.7.1

1.7.2

1.7.2.1

1.7.3

1.8

1.9

1.10

1.11

1.12

1.13

1.14

Table	of	Contents
Overview

Channel	Data

Site	Path

Authorization

Options

Alternative	Payment	Methods

Implementations

Payment	Form

Data	Object

Allocations

Preloading	Bookings

Callbacks

Validation

Forex

Test	Credit	Cards

Translations

Troubleshooting

Appendix

1



Introduction
Trust	My	Travel	work	differently	to	a	normal	payment	company	and	ARE	NOT	a	payment	gateway.	Our	value	add	is	the	fact	that	we
build	in	financial	protection	to	all	transactions	meaning	that	our	acquiring	partners	and	the	cardholders	are	protected	against	the
insolvency	of	our	providers.

Due	to	our	unique	proposition	we	capture	a	lot	more	information	than	a	traditional	payment	provider,	and	we	also	do	not	just	sit	one
MID	behind	a	provider.	As	such	we	ask	that	you	do	not	treat	this	implementation	as	a	payment	gateway	integration	or	make
assumptions	about	this	integration	based	on	previous	integrations	of	payment	providers.

Overview
To	begin	using	the	Trust	My	Travel	Payment	Modal,	you	will	need:

A	TMTProtects	account
A	channel	on	your	TMTProtects	account	that	is	ready	for	processing	(nb	this	can	be	a	channel	in	test	mode).
A	secret	key	for	that	channel.
The	base	currency	of	the	channel
Your	TMTProtects	site	path

See	the	Channel	Data	page	and	Site	Path	page	for	further	detail.

Authorisation

To	obtain	a	valid	token	for	transacting,	and	to	prevent	tampering	with	transaction	data,	an	authorisation	string	must	be	created	for	each
transaction	and	hashed	and	salted	with	your	channel	secret.	A	GMT	timestamp	in	the	required	format	must	be	included	in	this	string	and
appended	to	it.	Authorisation	strings	are	valid	for	15	minutes.	Please	see	the	Authorisation	page	page	for	further	detail	and	code
examples.

Scripts

Having	obtained	these	details,	you	will	need	to	include	the	following	script	on	your	checkout	page.	This	script	must	always	be	loaded
from	tmtprotects.com

<script	src="https://payment.tmtprotects.com/tmt-payment-modal.3.4.0.js"></script>

Beneath	this	script,	you	will	need	a	script	that	inits	the	TMT	Payment	Modal	and	passes	in	your	path	and	either	formId	or	data	values
depending	on	the	implementation	that	you	are	using.

Form	implementation:

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:	'test-site',

												formId:	'tmt-payment-form'

								})

				}

</script>

Object	implementation:

<script>

				window.tmtPaymentModalReady	=	function	()	{

Overview

2



												const	data	=	{

																...

												}

												const	button	=	document.getElementById('trigger-modal');

												button.addEventListener('click',	function	()	{

																const	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

																				path:	'test-site',

																				data:	data

																})

												})

								}

</script>

For	examples	of	further	options	that	can	be	passed	to	the	TMT	Payment	Modal,	please	See	the	options	page

NB:	If	you	are	serving	up	the	payment	modal	from	within	an	iframe,	you	will	need	to	define	the	iframe	origin	as	well	as	all
ancestors	via	the	origin	option

Alternative	Payment	Methods
It	is	now	possible	to	process	non-credit-card	payments.	By	default,	the	modal	will	only	serve	up	the	credit	card	interface,	but	you	can
configure	it	to	offer	any,	or	all,	of	our	alternative	payment	methods	as	well	as,	or	instead	of,	taking	credit	card	payments.	See	the	options
page	for	configuration	details,	and	the	Alternative	Payment	Methods	page	for	the	individual	requirements	of	each	method.

Implementation
In	order	to	pass	booking	and	transaction	data	to	the	modal,	you	will	need	to	choose	from	one	of	our	Payment	Modal	implementations.
Select	the	method	that	suits	your	workflow	best.	The	basic	callbacks	for	this	process	are	covered	below.	See	the	callbacks	page	for
details	on	all	available	callbacks.

End	to	End	Process
From	the	point	at	which	the	user	clicks	to	pay,	and	triggers	the	modal,	the	following	events	occur:

User	clicks	pay
Modal	is	triggered
Modal	validates	that	all	required	data	is	present
Modal	attempts	to	obtain	a	token	using	the	authstring
Modal	attempts	to	create	a	booking	using	the	booking	data	provided
Modal	executes	booking_logged	callback
Modal	renders	payment	form
User	adds	credit	card	details	and	clicks	pay
Transaction	attempted
If	transaction	is	subject	to	3DS2,	the	relevant	authentication	is	served	to	the	user
If	transaction	is	not	a	credit	card	payment,	the	relevant	third	party	form	is	served	up	to	the	user

If	the	transaction	is	successful,	the	transaction_logged	callback	is	triggered	with	the	full	API	response	to	the		POST	/transactions		call
performed	by	the	modal.

If	the	card	issuing	bank	declines	the	card	for	some	reason	the	transaction_failed	callback	is	triggered	with	the	full	API	response	to	the
	POST	/transactions		call	performed	by	the	modal.

After	the	completion	of	any	of	the	scenarios	detailed	above,	the	user	experience	is	now	back	in	your	hands,	and	it	is	up	to	you	to	close
the	modal,	and	validate	the	response.

Overview

3



Closing	the	Modal

The	Payment	Modal	comes	with	a		closeModal		method	that	allows	you	to	programtically	close	the	modal	from	the	same	page	that	it
was	triggered	from.

window.tmtPaymentModalReady	=	function	()	{

				var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

								path:	'test-site',

								formId:	'tmt-payment-form'

				})

				tmtPaymentModal.on('transaction_logged',	function	(data)	{

								//	Call	AJAX	functions	to	update	database

								...

								tmtPaymentModal.closeModal();

								//	Redirect	to	success	or	fail	page.

				})

})

Troubleshooting

Should	you	encounter	any	issues	in	getting	through	the	End	to	End	process,	please	do	the	following	in	the	order	shown:

Consult	the	Troubleshooting	section	of	this	documentation
Refer	to	the	TMT	Status	Page	to	ensure	that	your	issue	is	not	an	open	bug
Contact	TMT	Member	Support	with	as	much	detail	as	possible	on	the	issue

Release	Notes
Additional	browser	data	captured	for	3DS2	transactions
Updates	to	TMT	branding
Fixed	bug	where	not	all	available	payment	currencies	were	made	available

Browser	Support
The	current	version	of	the	Payment	Modal	has	been	tested	in	latest	versions	of	Chrome,	Firefox,	Safari,	Edge	and	IE11.

Previous	Versions
Previous	versions	of	the	Payment	Modal	and	the	related	documentation	can	be	found	on	our	demos	site

Support

Please	subscribe	to	https://status.tmtprotects.com/	for	updates	on	new	versions	of	the	modal.	Please	direct	all	issues	and	questions	to
membersupport@trustmytravel.com	supplying	as	much	detail	as	possible	such	as	including	links	to	pages	where	the	modal	is	being
implemented	or	code	examples.

Overview

4

https://status.tmtprotects.com
mailto:membersupport@trustmytravel.com
https://demo.trustmytravel.com/modal/
https://status.tmtprotects.com/
mailto:membersupport@trustmytravel.com


Channel	Data

Channel	ID	and	Secret

You	can	obtain	the	ID	and	Channel	Secret	for	the	channel	you	wish	to	integrate	by	logging	into	the	TMT	dashboard	and	going	to	the
channels	page.	Here	the	IDs	of	all	available	channels	are	shown

In	this	example,	the	channel	ID	is	1701

Click	on	the	channel	to	open	it	and	then	click	on	the	blue	"View"	button	in	the	"Channel	Secret"	row.	This	will	reveal	the	channel	secret
and	a	button	to	copy	it	clipboard.

Channel	Data

5

https://dashboard.trustmytravel.com


Channel	Data

6



Site	Path
To	find	your	site	path,	login	to	the	TMTProtects	Dashboard	and	click	on	the	site	settings	button	as	shown	in	the	screenshot	below.
This	will	reveal	your	site	settings	including	the	"Site	Path".

This	value	should	be	passed	to	the	Payment	modal	via	the	path	option.

Site	Path

7

https://dashboard.trustmytravel.com/


Authorisation
The	authorisation	string	should	be	generated	by	taking	the	steps	listed	below.	Code	examples	are	provided	further	down	the	page	along
with	PHP	helper	classes.

To	test	the	authorisation	string	your	app	generates	matches	the	expected	authorisation	string,	or	to	assist	with	debugging	why	an
authorisation	string	is	not	working	you	can	use	the	Auth	Test	Demo

The	steps	required	to	generate	the	authorisation	string	are	as	follows:

Generate	a	GMT	datetime	stamp	with	format:	YmdHis
Concatenate	the	following	values,	in	the	order	shown,	into	a	query	string:

Channel	ID
Channel	base	currency
Transaction	total	in	base	currency
The	GMT	datetime	stamp

Hash	the	string	using	sha256
Append	the	channel	secret	to	the	hashed	string	and	hash	again,	again	with	sha256
Append	the	datetime	stamp	to	this	hashed	and	salted	string

Extending	Authorisation

If	there	are	other	items	included	in	the	transaction	that	you	wish	to	insure	against	tampering,	these	values	can	also	be	included	in	the
authstring.

The	following	fields	can	be	included	in	any	implementation:

country
date
email
firstname
reference
surname

You	can	also	include	the	following	in	the	Data	Object	Implementaion

allocations
charge_channel

IMPORTANT

If	you	include	additional	values	in	the	authstring,	you	must	declare	them	via	the	Verify	Option.
Values	must	be	concatenated	in	alphabetical	order	of	the	field	they	relate	to	with	the	timestamp	appended	afterwards
If	you	are	including	allocations	in	your	authstring,	the	order	of	the	fields	in	the	allocation	objects	must	match	the	order	of	the	fields
passed	to	the	init	method.
Arrays	must	be	json	encoded

Examples
If	the	language	you	use	does	not	have	examples	shown,	please	send	a	request	to	techsupport@trustmytravel.com	indicating	the	coding
language	you	are	using.

PHP
Node.js

Authorization

8

https://demo.trustmytravel.com/modal/3.4.0/auth.php
mailto:techsupport@trustmytravel.com


PHP

A		TmtAuthstring\Create		class	is	available	on	the	TMT	Github	Page	along	with	instructions	on	implementation,	or	you	can	write	your
own	using	the	examples	below:

Basic	Implementation

//	Get	current	time	in	GMT.

$time_now	=	new	DateTime('now',	new	DateTimeZone('GMT'));

//	Create	timestamp	in	'YmdHis'	format.	E.g.	20190812055213	

$timestamp	=	$time_now->format('YmdHis');

//	Concatenate	the	values	for	channels,	currencies,	total	and	your	timestamp	in	that	order.

$booking_vars	=	[

				'channels'			=>	2,

				'currencies'	=>	'USD',

				'total'						=>	9999,

				'timestamp'		=>	$timestamp,

];

$string	=	implode('&',	$booking_vars);

//	SHA256	the	string.

$auth_string	=	hash(	'sha256',	$string	);

//	Fetch	your	channel	secret	and	concatenate	to	string.

$secret	=	'MYCHANNELSECRET123';

$salted_auth_string	=	hash(	'sha256',	$auth_string	.	$secret	);

//	Concatenate	with	timestamp.

$final_auth_string	=	$salted_auth_string	.	$timestamp;

Extended

//	Get	current	time	in	GMT.

$time_now	=	new	DateTime('now',	new	DateTimeZone('GMT'));

//	Create	timestamp	in	'YmdHis'	format.	E.g.	20190812055213	

$timestamp	=	$time_now->format('YmdHis');

//	Concatenate	the	values	in	alphabetical	order	then	append	timestamp.

$booking_vars	=	[

				'allocations				=>	json_encode([

								[

												'channels'						=>	23,

												'currencies'				=>	'GBP',

												'operator'						=>	'flat',

												'total'									=>	1000,

								],

				]),

				'channels'						=>	2,

				'currencies'				=>	'USD',

				'reference						=>	'SOMEREFERENCE',

				'total'									=>	9999,

];

$booking_vars['timestamp']	=	$timestamp;

$string	=	implode('&',	$booking_vars);

//	SHA256	the	string.

$auth_string	=	hash(	'sha256',	$string	);

//	Fetch	your	channel	secret	and	concatenate	to	string.

$secret	=	'MYCHANNELSECRET123';

$salted_auth_string	=	hash(	'sha256',	$auth_string	.	$secret	);

Authorization

9

https://github.com/trustmytravel/TmtAuthstring


//	Concatenate	with	timestamp.

$final_auth_string	=	$salted_auth_string	.	$timestamp;

Node	JS

//	Get	current	time	in	GMT.

const	date	=	new	Date();

const	utcDate	=	new	Date(date.getUTCFullYear(),	date.getUTCMonth(),	date.getUTCDate(),	date.getUTCHours(),	date.getUTCMinutes(

),	date.getUTCSeconds());

//	Create	timestamp	in	'YYYYMMDDHHmmss'	format.	E.g.	20190812055213	

const	timestamp	=	format(utcDate,	'YYYYMMDDHHmmss')

//	Concatenate	the	values	for	channels,	currencies,	total	and	your	timestamp	in	that	order.

const	bookingVars	=	{

				channels:	2,

				currencies:	'USD',

				total:	9999,

				timestamp:	timestamp

}

let	string	=	[]

for	(const	key	in	bookingVars)	{

				string.push(bookingVars[key])

}

string	=	string.join('&')

//	SHA256	the	string.

const	encode	=	crypto.createHash('sha256').update(string).digest('hex')

//	Fetch	your	channel	secret	and	concatenate	to	string.

const	{	CHANNEL_SECRET	}	=	'MYCHANNELSECRET123'

const	authString	=	crypto.createHash('sha256').update(

				Buffer.concat([

								new	Buffer(encode),

								new	Buffer(CHANNEL_SECRET)

				])

).digest('hex')

//	Concatenate	with	timestamp.

const	appAuthString	=	authString	+	timestamp;

Authorization

10



Options

Mandatory

The	following	option	is	mandatory	and	must	be	included	for	the	payment	modal	to	function	correctly:

path

You	must	also	include	one	of	these	options:

formId
data

Test	Environments

If	you	are	using	a	channel	that	is	in	test	mode,	you	will	need	to	add	the	environment	option.

Iframes

If	you	are	serving	up	the	payment	modal	from	within	an	iframe,	all	ancestors	in	the	chain	must	be	defined	using	the	origin	option.

Optional

The	following	options	can	be	used	where	required

paymentMethods
paymentCurrency
lang
disableLang
disableCloseWindowPrompt
debug
verify
transactionType
installments

Examples

path

The	path	of	your	TMTProtects	site.

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:	'test-site',

												...

								})

				}

</script>

formId

Options

11



The	ID	of	the	form	containing	the	required	booking	and	transaction	data.	See	Payment	Form	Implementation	for	more	detail.

<form	id="myPaymentForm"	action="complete.php"	method="post">

				//	Form	inputs	etc...

</form>

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:	'myPaymentForm',

												...

								})

				}

</script>

data

An	object	containing	all	required	booking	and	transaction	data.	See	Data	Object	Implementation	for	more	detail.

<button	id="trigger-modal"	class='btn	btn-primary'>Pay	Now</button>

<script>

				window.tmtPaymentModalReady	=	function	()	{

								const	data	=	{

												booking_id:	'0',

												channels:	'2',

												country:	'GB',

												//	Authentication

												booking_auth:	authentication_string,

												//	Lead	Traveller

												firstname:	'John',

												surname:	'Smith',

												email:	'john.smith@example.org',

												date:	'2020-05-15',

												//	Payment	details

												payee_name:	'Jane	Smith',

												payee_email:	'jane.smith@example.org',

												payee_address:	'123	test	address',

												payee_city:	'Test	city',

												payee_country:	'GB',

												payee_postcode:	'0000',

												currencies:	'GBP',

												total:	'9999'

								}

								const	button	=	document.getElementById('trigger-modal')

								button.addEventListener('click',	function	()	{

												var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

																path:	'test-site',

																data:	data

												})

								})

				}

</script>

Environment

Different	versions	of	the	tokeniser	tool	are	used	according	to	whether	a	channel	is	in	test	mode	or	not.	If	the	channel	you	are
implementing	the	modal	for	is	in	test	mode,	you	will	need	to	set	the	environment	option	accordingly.	For	other	modes,	the	environment
option	will	default	to	live.

NB:	While	you	are	permitted	to	use	non-secure	URLs	in	test	mode,	you	will	not	be	permitted	to	do	so	in	live	mode

<script>

Options

12



				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:	'test-site',

												formId:	'my-payment-form',

												environment:	'test'

								})

				}

</script>

Origin

If	you	are	serving	up	the	payment	modal	from	within	an	iframe,	all	ancestors	in	the	chain	must	be	defined	in	a	comma	separated	list	with
the	parent	listed	first,	followed	by	the	origin	that	will	render	it	and	so	on	up	the	chain.

As	an	example,	foo.com	is	an	iframe	that	is	serving	up	the	modal	within	a	file	on	bar.com:

<body>

				<!--content	served	up	by	bar.com-->

				<iframe	src=foo.com>

								<button	id="trigger-modal">Pay</button>

								<script>

												window.tmtPaymentModalReady	=	function	()	{

																const	button	=	document.getElementById("trigger-modal");

																button.addEventListener("click",	function	()	{

																				const	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

																								path:	"some-site",

																								origin:	"foo.com,bar.com",

																								data:	{

																												...

																								}

																				});

																});

												}

								</script>

				</iframe>

</body>

paymentMethods

By	default,	the	payment	modal	offers	payment	via	credit	card.	However,	we	also	offer	the	following	payment	methods	that	can	be	used
in	addition	to,	or	instead	of,	credit	card	payments:

Alipay
Giropay
iDEAL
DLocal	(Installments)
Rapipago
Sofort

To	indicate	the	methods	you	want	to	use,	pass	them	in	as	an	array	as	per	the	examples	below.	Payment	methods	will	appear	in	the	order
you	define	them,	with	the	exception	of	"credit-card",	which	will	always	be	the	default	interface	if	included.	Please	review	the	Alternative
Payment	Methods	page	page	for	further	details	on	these	methods.

Using	all	available	payment	methods

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

Options

13



												paymentMethods:	[

																'credit-card',

																'alipay',

																'dlocal',

																'giropay',

																'ideal',

																'sofort',

																'rapipago'

												]

								})

				}

</script>

Using	Alipay	and	Credit	Card

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												paymentMethods:	[

																'credit-card',

																'alipay'

												]

								})

				}

</script>

Using	Giropay	and	Alipay	with	Giropay	as	default

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												paymentMethods:	[

																'giropay',

																'alipay'

												]

								})

				}

</script>

paymentCurrency

The	default	behaviour	of	the	payment	modal	is	to	offer	payment	in	the	base	currency	of	your	channel,	and	allow	the	customer	to	change
the	payment	currency	as	required.	Should	you	know	that	the	customer	making	payment	is	based	in	a	country	that	does	not	use	your
channel's	base	currency,	you	can	improve	the	user	experience	by	defining	their	currency	to	default	the	payment	modal	to.

For	example,	if	the	base	currency	of	your	channel	is	USD	and	your	customer	is	based	in	Germany,	you	would	define	the
paymentCurrency	as	EUR	as	shown	below.

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												paymentCurrency:'EUR'

								})

				}

</script>

Should	you	wish	to	display	your	prices	in	currencies	other	than	your	base	currency,	you	will	need	to	utilise	your	channel's	forex	feed

Options

14



lang

The	modal	is	rendered	in	English	by	default.	Should	you	know	that	the	user	prefers	an	alternate	language,	the	modal	can	be	set	to	load	in
that	language	should	a	translation	be	available.	Once	loaded,	the	user	is	still	free	to	switch	languages	should	they	wish.	The	language
which	the	modal	is	in	at	the	point	of	transaction	determines	what	language	the	user's	payment	receipt	shall	be	in.

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												lang:	'ptBR'

								})

				}

</script>

disableLang

If	the	translations	you	require	for	your	customer	base	are	not	available,	you	can	disable	the	translation	picker.

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												disableLang:	true

								})

				}

</script>

disableCloseWindowPrompt

If	you	have	your	own	means	of	handling	user	attempts	to	close	the	browser	or	refresh	during	transaction	you	may	wish	to	disable	the
in-built		onbeforeounload		close	window	prompt.

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												disableCloseWindowPrompt:	true

								})

				}

</script>

debug

Set		debug	=	true		to	enable	validation	and	error	logs	in	console.

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												debug:	true

								})

				}

</script>

Verify

Options

15



If	you	have	extended	the	authstring	to	include	other	booking	and	transaction	values,	you	will	need	to	include	the		verify		option	in	order
to	pass	in	an	array	of	the	fields	that	you	have	included	in	the	authstring.

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												verify:	["reference"]

								})

				}

</script>

The	following	fields	can	be	used	in	the		verify		array	in	any	implementation:

country
date
email
firstname
reference
surname

You	can	also	include	the	following	in	the	Data	Object	Implmentaion

allocations
charge_channel

Transaction	Type

We	now	allow	for	pre-authorizing	a	card	via	the	modal	leaving	you	to	make	a	Capture	request	via	an	API	call	in	order	to	capture	the
payment.

NB:	If	you	intend	to	use	this	option,	please	note	the	following:

An	authorize	transaction	will	not	result	in	funds	being	removed	from	the	customer's	account.	You	must	complete	a	capture	request
in	order	to	complete	the	transaction
Authorize	transactions	are	subject	to	a	per	transasction	fee	as	are	capture	transactions
Authorize	transactions	can	only	be	captured	within	a	short	time	frame.	This	is	generally	up	to	5	days	but	can	differ	according	to
the	bank	processing	the	payment.	We	would	advise	that	you	remain	well	inside	5	days	for	this	to	avoid	losing	transactions
Allocations	are	not	permitted	on	authorize	transactions	and	must	be	included	with	the	Capture	request

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												transactionType:	'authorize'

								})

				}

</script>

Installments

If	you	are	offering	installments	as	an	alternative	payment	option,	you	can	control	which	of	the	available	installment	options	are	offered
by	passing	the	required	value	or	values	in	an	array.	This	can	be	used	to	present	the	user	with	a	pre-defined	installment	value,	or	to	hide
the	installments	interface	altogether	(this	can	be	useful	if	you	know	that	your	customer	has	a	Brasilian	bank	card	but	want	to	run	a
normal	credit	card	payment).

Example:	No	Installments

Options

16

https://api.trustmytravel.com/#bfdbd1a3-0448-41fd-a59b-8443dbcd0049


<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												paymentMethods:	['dlocal']

												installments:	[1]

								})

				}

</script>

Example:	Set	Installment	Plan	to	3	Installments

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												paymentMethods:	['dlocal']

												installments:	[3]

								})

				}

</script>

Example:	All	Installment	Options	(default)

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

												path:'test-site',

												formId:	'my-payment-form',

												paymentMethods:	['dlocal']

												installments:	[1,	3,	6,	9,	12]

								})

				}

</script>

Options

17



Alternative	Payment	Methods
Credit	card	payments	are	available	in	all	the	currencies	Trust	My	Travel	support	and	made	using	the	data	required	by	the	modal	on
initialisation.	The	alternative	payment	methods	that	we	offer	are	restricted	by	currency	and	further	considerations	are	needed	regarding
the	data	supplied	when	triggering	the	modal.

Payment	Currency

Alternative	payment	methods	are	only	available	in	the	payment	currencies	defined	below.	If	any	of	these	methods	are	made	available	to
the	customer	and	they	select	one,	the	payment	currency	will	automatically	switch	to	the	currency	linked	to	the	payment	method.

APM Payment	Currency

Alipay USD

Giropay EUR

iDEAL EUR

DLocal BRL

Rapipago ARS

Sofort EUR

The	same	applies	if	the	paymentCurrency	option	is	defined.

For	example,	if	the	modal	is	launched	with	USD	as	payment	currency	and	the	user	has	the	option	to	select	Giropay,	then	the	payment
currency	will	switch	to	EUR.

Authorize	Transaction	Type	is	Ignored

Alternative	payment	methods	only	allow	for	purchase	transactions.	It	is	not	possible	to	pre-authorize	an	alternative	payment	method
transaction.	As	such,	if	the	modal	is	triggered	with	the	transactionType	option	set	to	"authorize"	and	the	user	selects	an	alternative
payment,	the	transactionType	option	will	be	ignored.

Testing

If	you	are	using	Google	Chrome,	you	can	right	click	and	select	'Translate	to	English'	(or	the	language	of	your	browser).

Alipay	Success

In	the	third	party	payment	window,	login	with:

Username:		alipaytest20091@gmail.com	
Password:		111111	

Add		111111		as	the	Alipay	password	and	click	confirm.

Alipay	Fail

Not	yet	available

NB	Certain	companies	cannot	use	Alipay.	Please	check	if	your	industry	is	featured	on	their	restricted	list	-	if	it	is	here	TMT	will	be	unable
to	support	Alipay	on	your	account.

Alternative	Payment	Methods

18

https://global.alipay.com/docs/ac/Platform/le18gg


Giropay	Success

In	the	third	party	payment	window,	login	with:

Username:		chiptanscatest2	
Password:		12345	

Click	Pay	Now

Click	Continue
Enter		123456		as	TAN	and	click	Log	in

Giropay	Fail

In	the	third	party	payment	window	click	on	the	Abort	button.

iDEAL	Success

Run	a	transaction	for	any	value	other	than	EUR	2	and	click	the	Confirm	Transaction	button.

iDEAL	Fail

Run	a	transaction	for	EUR	2	and	click	the	Confirm	Transaction	button.

Installments	Success:

Use		4242	4242	4242	4242		as	credit	card	number,	a	valid	expiry	date	and		100		as	PIN.	Pick	any	number	of	installments	and	enter	an	ID
number.

Installments	Fail:

Use		4242	4242	4242	4242		as	credit	card	number,	a	valid	expiry	date	and		101		as	PIN.	Pick	any	number	of	installments	and	enter	an	ID
number.

Rapipago	Success

There	is	no	third	party	sandbox	payment	window	available	for	this	so	success	is	triggered	behind	the	scenes.	For	a	success,	run	a
transaction	for	any	value	greater	than	or	equal	to	ARS	50.

Rapipago	Fail

There	is	no	third	party	sandbox	payment	window	available	for	this	so	success	is	triggered	behind	the	scenes.	For	a	fail,	run	a	transaction
for	any	value	less	than	ARS	50.

Sofort	Success

In	the	third	party	payment	window,	login	with:

Account	number:		88888888	
the	PIN	field:		123456	

Select	any	account	on	the	next	page	and	then	click	Next.

Enter	12345	in	the	TAN	field	and	click	Next.

Sofort	Fail

Unavailable.

Alternative	Payment	Methods

19



Individual	Requirements

Rapipago

Rapipago	transactions	are	only	permitted	where	the	payer	is	in	Argentina.	This	is	indicated	by	passing	the	ISO	country	code	for
Argentina,		AR	,	to	the	modal	using	either	the	value	of	an	element	with	class		tmt_payee_country		or	the	value	of	the	field		payee_country	
passed	in	via	an	object.

Giropay

Giropay	transactions	require	the	inclusion	of	a	description	of	what	the	transaction	is	for.	If	a	booking	description	has	been	passed	to	the
modal	using	either	the	value	of	an	element	with	class		tmt_description		or	the	value	of	the	field		description		passed	in	via	an	object
then	this	will	be	used	with	the	transaction	request.

If	no	information	is	supplied	via	these	fields,	then	the	description	passed	to	Giropay	defaults	to:

"COMPANY	-	sale"

Where	COMPANY	is	the	value	of	the	channel	receipt	label	if	one	exists,	and	if	not,	the	name	of	the	site.

Alternative	Payment	Methods

20



Implementations
There	are	two	ways	in	which	you	can	pass	booking	and	transaction	data	to	the	Payment	Modal.

Payment	Form

Create	a	form	with	the	required	fields	defined	and	pass	the	ID	of	the	form	to	the	Payment	Modal	SDK.	On	submitting	the	payment
form,	the	modal	is	triggered,	a	booking	is	placed	using	the	data	present	on	the	payment	page	and	the	user	is	prompted	for	their	credit
card	details	in	order	to	complete	the	transaction.

Payment	Form	Implementation
Payment	Form	Demo,	minumum	options
Payment	Form	Demo,	full	options

Data	Object

An	object	containing	all	required	fields	can	be	passed	to	the	Payment	Modal	SDK.	An	event	listener	is	also	added,	the	modal	is	triggered
when	the	nominated	event	is	triggered,	a	booking	is	placed	using	the	data	present	on	the	payment	page	and	the	user	is	prompted	for	their
credit	card	details	in	order	to	complete	the	transaction.

Data	Object	Implementation
Data	Object	Demo,	minumum	options
Data	Object	Demo,	full	options

Implementations

21

https://demo.trustmytravel.com/modal/3.4.0/form-minimum.php
https://demo.trustmytravel.com/modal/3.4.0/form-maximum.php
https://demo.trustmytravel.com/modal/3.4.0/data-object-minimum.php
https://demo.trustmytravel.com/modal/3.4.0/data-object-maximum.php


Payment	Form
For	this	implementation,	you	will	need	a	form	with	the	fields	defined	below	present	on	the	page	with	the	css	class	properties	shown
(either	hidden	from	or	displayed	to	the	user).

On	triggering	the	modal,	a	booking	is	placed	using	the	data	present	in	the	form	and	the	user	is	prompted	for	their	credit	card	details	in
order	to	complete	the	transaction.

If	any	of	the	required	data	is	not	present,	an	error	is	output	detaling	the	data	that	is	not	present.

If	transaction	fails	for	some	reason,	the	user	is	given	a	further	two	attempts	to	make	payment	before	the	transaction	is	failed
permanently.

On	successful	transaction,	the	user	is	shown	the	success	dialog.

Required	Data	and	Relevant	CSS	Class

All	transactions	made	using	the	payment	form	must	have	the	following:

CSS	Class Description

tmt_booking_auth The	hashed	and	salted	authorisation	string	for	the	transaction

tmt_booking_id Set	this	to	0	to	create	a	new	booking,	or	an	existing	booking	ID	if	you	preloaded	a	booking

tmt_channels Set	this	to	the	ID	of	the	channel	you	wish	to	use	for	the	transaction

tmt_payee_name The	name	of	the	person	making	payment	as	it	appears	on	their	credit/debit	card

tmt_payee_email The	email	of	the	person	making	payment

tmt_payee_country The	ISO	3166-1	alpha-2	value	of	the	country	of	the	person	making	payment

tmt_currencies The	ISO	4217	value	for	the	currency	the	travel	item	is	being	sold	in	(must	match	the	currency	of	the
channel	in	use)

tmt_total The	total	being	billed	in	the	currency	of	the	channel	in	use	as	a	cent	value	(e.g.	$10.00	=	1000)

New	Bookings

Unless	you	have	preloaded	a	booking,	you	will	also	have	to	supply	the	following	booking	specific	fields,	which	will	be	used	to	create	a
new	booking	prior	to	the	transaction:

CSS	Class Description

tmt_country The	ISO	3166-1	alpha-2	value	of	the	country	the	booking	takes	place	in

tmt_firstname The	firstname	of	the	lead	traveller

tmt_surname The	surname	of	the	lead	traveller

tmt_email The	email	address	of	the	lead	traveller

tmt_date The	end	date	of	travel	in	YYYY-MM-DD	format

Address	Data	and	Relevant	Class	Name

If	your	account	is	NOT	enabled	for	Cardholder	Present	(all	accounts	are	disabled	for	Cardholder	Present	by	default)	then	you	will	need
to	supply	the	fields	shown	in	the	address	data	table.	It	is	up	to	you	to	validate	that	the	end	user	has	completed	the	address	fields	prior
to	triggering	the	modal.	Failing	to	validate	these	fields	will	result	in	a	developer	error	being	output	in	the	event	of	an	end	user	not
completing	them.

Payment	Form

22



CSS	Class Description

tmt_payee_address The	adress	of	the	person	making	payment

tmt_payee_city The	city	of	the	person	making	payment

tmt_payee_postcode The	postcode/zip	of	the	person	making	payment

Optional	Data	and	Relevant	Class	Name

Class Description

tmt_reference Your	own	reference

tmt_description A	description	of	the	product	being	sold

tmt_pax The	amount	of	people	the	product	is	for

Payment	Form	Example

<form	id="myPaymentForm"	action="complete.php"	method="post">

				<div	class="row">

								<div	class="col-sm-8">

												<div	class="form-group">

																<div	class="col-sm-12">

																				<h2>Billing</h2>

																</div>

												</div>

												<div	class="form-group">

																<div	class="col-sm-6">

																				<label	for="payee_name">Payee	Name</label>

																				<input	name="payee_name"	type="text"	class="form-control	tmt_payee_name">

																</div>

																<div	class="col-sm-6">

																				<label	for="email">Email</label>

																				<input	type="email"	class="form-control	tmt_payee_email">

																</div>

												</div>

												<div	class="form-group">

																<div	class="col-sm-12">

																				<label	for="address">Address</label>

																				<input	name="address"	type="text"	class="form-control	tmt_payee_address"	value=""	/>

																</div>

												</div>

												<div	class="form-group">

																<div	class="col-sm-12">

																				<label	for="city">City</label>

																				<input	name="city"	type="text"	class="form-control	tmt_payee_city"	value=""	/>

																</div>

												</div>

												<div	class="form-group">

																<div	class="col-sm-8">

																				<label	for="country">Country:	</label>

																				<select	name="country"	class="form-control	tmt_payee_country">

																								<option	value="US">United	States	of	America</option>

																								<option	value="GB">United	Kingdom</option>

																								<option	value="AU">Australia</option>

																				</select>

Payment	Form

23



																</div>

																<div	class="col-sm-4">

																				<label	for="zip">Zip	/	Postcode:	</label>

																				<input	name="zip"	type="text"	class="form-control	tmt_payee_postcode"	value=""	/>

																</div>

												</div>

												<div	class="form-group">

																<div	class="col-sm-12">

																				<input	id="tmt-pay"	type="submit"	value="Pay"	name="pay"	class="btn	btn-primary	btn-block"	/>

																</div>

												</div>

								</div>

								<div	class="col-sm-4">

												<div	class="form-group">

																<div	class="col-sm-12">

																				<h2>Your	Cart</h2>

																</div>

												</div>

												<div	class="form-group">

																<div	class="col-sm-12">

																				<ul	class="list-group">

																								<li	class="list-group-item">

																												<div>

																												<h6	class="my-0">Guided	Tour	of	Big	Ben</h6>

																												<small	class="text-muted">3	hour	guided	tour	of	Britain's	most	famous	timepiece.</small>

																												</div>

																												<span	class="text-muted">£22</span>

																								</li>

																								<li	class="list-group-item">

																												<div>

																												<h6	class="my-0">Stand-up	Paddleboard	the	Thames</h6>

																												<small	class="text-muted">Who	needs	the	ocean	when	you	can	paddle	down	the	charming	River	Thames?<

/small>

																												</div>

																												<span	class="text-muted">£9</span>

																								</li>

																								<li	class="list-group-item">

																												<span>Total</span>

																												<input	type="hidden"	class="tmt_currencies"	value="GBP"	/>

																												<strong>GBP	31</strong>

																												<input	type="hidden"	class="tmt_total"	value="3100"	/>

																								</li>

																				</ul>																				

																</div>

												</div>

								</div>

								<!--	HIDDEN	VALUES	-->

								<input	type="hidden"	class="tmt_booking_id"	value="0"	/>

								<input	type="hidden"	class="tmt_channels"	value="4"	/>

								<!--	BOOKING	DETAILS	-->

								<input	name="firstname"	type="hidden"	class="form-control	tmt_firstname"	value="John">

								<input	name="surname"	type="hidden"	class="form-control	tmt_surname"	value="Smith">

								<input	name="email"	type="hidden"	class="form-control	tmt_email"	value="john.smith@example.org">

								<input	name="country"	type="hidden"	class="tmt_country"	value="GB"	/>

								<input	type="hidden"	class="tmt_date"	value="2019-05-12"	/>

								<input	type="hidden"	class="tmt_booking_auth"	value="<?php	echo	$final_auth_string;	?>"	/>

				</div>

</form>

<script>

				window.tmtPaymentModalReady	=	function	()	{

								var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

Payment	Form

24



												path:'test-site',

												formId:'myPaymentForm'

								})

				}

</script>

Payment	Form

25



Data	Object
For	this	implementation,	an	object	containing	required	properties	as	defined	below	is	passed	to	the	modal.

On	triggering	the	modal,	a	booking	is	placed	using	data	from	the	object	and	the	user	is	prompted	for	their	credit	card	details	in	order	to
complete	the	transaction.

If	any	of	the	required	data	is	not	present,	an	error	is	output	detaling	the	data	that	is	not	present.

If	transaction	fails	for	some	reason,	the	user	is	given	a	further	two	attempts	to	make	payment	before	the	transaction	is	failed
permanently.

On	successful	transaction,	the	user	is	shown	the	success	dialog.

Required	Data

All	transactions	made	using	the	data	object	must	have	the	following:

Key Description

booking_auth The	hashed	and	salted	authorisation	string	for	the	transaction

booking_id Set	this	to	0	to	create	a	new	booking,	or	an	existing	booking	ID	if	you	preloaded	a	booking

channels Set	this	to	the	ID	of	the	channel	you	wish	to	use	for	the	transaction

payee_name The	name	of	the	person	making	payment	as	it	appears	on	their	credit/debit	card

payee_email The	email	of	the	person	making	payment

payee_country The	ISO	3166-1	alpha-2	value	of	the	country	of	the	person	making	payment

currencies The	ISO	4217	value	for	the	currency	the	travel	item	is	being	sold	in	(must	match	the	currency	of	the	channel
in	use)

total The	total	being	billed	in	the	currency	of	the	channel	in	use	as	a	cent	value	(e.g.	$10.00	=	1000)

New	Bookings

Unless	you	have	preloaded	a	booking,	you	will	also	have	to	supply	the	following	booking	specific	fields,	which	will	be	used	to	create	a
new	booking	prior	to	the	transaction:

Key Description

country The	ISO	3166-1	alpha-2	value	of	the	country	the	booking	takes	place	in

firstname The	firstname	of	the	lead	traveller

surname The	surname	of	the	lead	traveller

email The	email	address	of	the	lead	traveller

date The	end	date	of	travel	in	YYYY-MM-DD	format

Address	Data

If	your	account	is	NOT	enabled	for	Cardholder	Present	(all	accounts	are	disabled	for	Cardholder	Present	by	default)	then	you	will	need
to	supply	the	fields	shown	in	the	address	data	table.

Key Description

payee_address The	adress	of	the	person	making	payment

Data	Object

26



payee_city The	city	of	the	person	making	payment

payee_postcode The	postcode/zip	of	the	person	making	payment

Optional	Data

Key Description

reference Your	own	reference

description A	description	of	the	product	being	sold

pax The	amount	of	people	the	product	is	for

allocations See	Allocations	objects	for	more	details

charge_channel See	Allocations	objects	for	more	details

Data	Object	Example

<button	id="trigger-modal"	class='btn	btn-primary'>Trigger	Payment	Modal</button>

<script>

				window.tmtPaymentModalReady	=	function	()	{

								const	data	=	{

												//	Booking	Data

												booking_id:	'0',

												channels:	'2',

												country:	'GB',

												date:	'2020-05-12',

												currencies:	'GBP',

												total:	'9999',

												reference:	'test	reference',	//	optional

												description:	'Some	holiday',	//	optional

												pax:	'3',	//	optional,

												//	Authentication

												booking_auth:	hashed_salted_auth_string,

												//	Lead	Traveller

												firstname:	'John',

												surname:	'Smith',

												email:	'john.smith@example.org',

												//	Payment	details

												payee_name:	'Jane	Smith',

												payee_email:	'jane.smith@example.org',

												payee_address:	'123	test	addres',

												payee_city:	'Test	city',

												payee_country:	'GB',

												payee_postcode:	'1234',

								}

								const	button	=	document.getElementById('trigger-modal')

								button.addEventListener('click',	function	()	{

												var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

																path:	'test-site',

																data:	data

												})

								})

				}

</script>

Data	Object

27



Allocations
The	Data	Object	implementation	also	allows	for	allocating	funds	to	alternative	channels.	These	allocations	can	be	flat	amounts	or
percentages	of	the	transaction	total.	You	can	also	nominate	which	channel	incurs	our	charges.

Allocation	Object	Fields

Key Type Description

channels integer The	ID	of	the	allocation	channel

currencies string The	currency	of	the	allocation	channel

total integer The	total	in	cents	or	as	a	percentage	to	be	allocated

operator string Either	"flat"	or	"percent"

Additional	Request	Fields

Key Type Description

charge_channel integer The	ID	of	the	channel	to	deduct	TMT's	charges	from.	If	not	included,	this	will	default	to	the	main
transaction	channel

Examples

£10.00	of	a	total	of	$220.00	is	being	allocated	to	a	channel	with	the	ID:	23.

TMT's	charges	for	the	transaction	will	be	deducted	from	this	channel	and	not	the	master	channel

{

				booking_id:	'0',

				channels:	2,

				currencies:	'USD',

				total:	'22000',

				...

				allocations:	[{

								channels:	23,

								currencies:	'GBP',

								operator:	'flat',

								total:	1000

				}],

				charge_channel:	23

}

5%	of	a	total	of	$220.00	is	being	allocated	to	a	channel	with	the	ID:	23.

TMT's	charges	for	the	transaction	will	be	deducted	from	this	channel	and	not	the	master	channel

{

				booking_id:	'0',

				channels:	2,

				currencies:	'USD',

				total:	'22000',

				...

				allocations:	[{

								channels:	23,

								currencies:	'GBP',

Allocations

28



								operator:	'percent',

								total:	5

				}],

				charge_channel:	23

}

£10.00	of	a	total	of	$220.00	is	being	allocated	to	a	channel	with	the	ID:	23.

TMT's	charges	for	the	transaction	will	be	deducted	from	the	master	channel	with	id	=	2.	There	is	no	need	to	indicate	this	via	the	request
as	TMT	payments	are	deducted	from	the	master	channel	by	default.

{

				booking_id:	'0',

				channels:	2,

				currencies:	'USD',

				total:	'22000',

				...

				allocations:	[{

								channels:	23,

								currencies:	'GBP',

								operator:	'flat',

								total:	1000

				}]

}

Notes
Allocations	are	only	permitted	via	the	Data	Object	implementation
Allocation	data	can	be	protected	from	tampering	via	the	verify	option
If	you	are	using	the	verify	option,	ensure	you	order	allocation	objects	the	same	in	the	verification	as	the	instantiation
The	channel	that	incurs	TMT's	charges	must	be	left	with	sufficient	funds	to	cover	the	cost	of	the	charges.
The	total	of	all	allocations	+	TMT's	charges	must	not	be	greater	than	the	transaction	total.
If	you	are	setting	the	transactionType	option	to	"authorize",	you	cannot	include	allocations.

Allocations

29



Pre-Loading	Bookings
Bookings	can	be	created	in	advance	of	prompting	the	user	for	payment	via	the	TMT	API.

User	Tokens

All	API	requests	must	include	a	valid	JWT	token.	To	obtain	a	token,	perform	an	API	request	as	follows,	where		{username}		and
	{password}		are	the	user	credentials	supplied	to	you	by	Trust	My	Travel:

Request

POST	/wp-json/jwt-auth/v1/token	HTTP/1.1

Host:	https://tmtprotects.com/wp

Content-Type:	application/json

{

		"username":	"{username}",

		"password":	"{password}"

}

Response

{

				"id":	2,

				"name":	"testsiteadmin",

				"username":	"testsiteadmin",

				"user_email":	"testsiteadmin@example.org",

				"user_nicename":	"testsiteadmin",

				"user_display_name":	"testsiteadmin",

				"usertype":	"member_admin",

				"type":	"member_admin",

				"sites":	[

								{

												"name":	"TMT	Test	Site",

												"url":	"http://tmtprotects.com/tmt-test",

												"path":	"/tmt-test/"

								}

				],

				"token":	"eyJ0e...PiUmyY",

				"refresh_token":	"eyJ0e...p37TI"

}

Add	Booking

	{path}		corresponds	with	your	site	path
	{token}		corresponds	with	a	User	Token
	{channel_id}		corresponds	with	the	ID	of	the	channel	you	wish	to	add	the	booking	to
	{channel_currency}		corresponds	with	the	currency	of	the	channel	you	wish	to	add	the	booking	to

Request

POST	/wp-json/tmt/v2/bookings	HTTP/1.1

Host:	https://tmtprotects.com/{path}

Content-Type:	application/json

Authorization:	Bearer	{token}

{

				"firstname":	"John",

				"surname":	"Smith",

Preloading	Bookings

30



				"email":	"john.smith@example.org",

				"date":	"2028-08-12",

				"total":	1000,

				"currencies":	"{channel_currency}",

				"channels":	{channel_id},

				"countries":	"GB"

}

Notes

The		date		field	is	for	the	date	of	travel.
The		countries		field	pertains	to	the	country	the	booking	takes	place	in	and	must	be	a	valid	ISO	3166-1	alpha-2	value
The		total		for	the	booking	is	in	cents

Response

{

				"id":	3097,

				"trust_id":	"3-3097",

				"author":	null,

				"created":	"2020-03-31	12:28:03",

				"modified":	"2020-03-31	12:28:03",

				"status":	"draft",

				"internal_id":	3097,

				"title":	"Smith	|	john.smith@example.org",

				"content":	null,

				"firstname":	"John",

				"surname":	"Smith",

				"email":	"john.smith@example.org",

				"date":	"2028-08-12",

				"pax":	null,

				"reference":	null,

				"total":	1000,

				"total_unpaid":	1000,

				"currencies":	null,

				"countries":	"GB",

				"country":	"GB",

				"transaction_ids":	[],

				"channels":	null,

				"language":	"enGB"

}

Notes	For	full	detail	on	the	bookings	endpoint	you	can	request	the	schema	using	the	example	below	where		{token}		corresponds	with	a
User	Token	and		{path}		corresponds	with	your	site	path.

OPTIONS	/wp-json/tmt/v2/bookings	HTTP/1.1

Host:	https://tmtprotects.com/{path}

Authorization:	Bearer	{token}

Preloading	Bookings

31



Callbacks
In	order	to	allow	you	to	capture	relevant	API	data	as	the	modal	process	occurs,	we	provide	the	following	callbacks:

token_error
booking_logged
booking_exists
booking_error
transaction_logged
transaction_failed
transaction_rejected
transaction_timeout
transaction_error
modal_closed
close_window_attempted

token_error

If	you	have	incorrectly	hashed	and	salted	the	Payment	Modal	auth	string,	or	if	the	auth	string	has	expired,	an	error	message	is	output	to
the	modal,	and	the	token_error	callback	is	triggered.	The	error	response	from	the	token	endpoint	is	passed	to	the	token_error	callback.

//	token_eror

{

				code:	"jwt_auth_invalid_request"

				message:	"Session	has	expired"

				data:	{

								status:	403

				}

}

booking_logged

If	you	do	not	create	a	booking	prior	to	the	user	arriving	at	your	payment	page,	and	therefore	set	the	value	of	your		.tmt_booking_id	
input	to	0,	a	booking	will	be	created	prior	to	the	transaction	being	attempted	using	the	POST	/bookings	endpoint.	The	response	to	this
request	will	be	passed	to	the	booking_logged	callback.	It	is	advisable	to	log	the	ID	of	the	booking	as	this	can	be	used	to	establish	whether
a	transaction	was	successful	or	not	if	timeouts	occur.

//	booking_logged

{

				author:	"24"

				channels:	84

				content:	""

				countries:	"GB"

				created:	"2019-08-12	10:29:15"

				currencies:	"USD"

				date:	"2020-05-12"

				email:	"john.smith@example.org"

				firstname:	"John"

				id:	2600

				modified:	"2019-08-12	10:29:15"

				pax:	0

				reference:	""

				status:	"draft"

				surname:	"Smith"

				title:	"Smith	|	john.smith@example.org"

				total:	999

				total_unpaid:	999

Callbacks

32

https://api.trustmytravel.com/#faa3febb-c395-463e-8cef-5ca079b28835


				transaction_ids:	[]

				trust_id:	"21-2600"

				...

}

booking_exists
This	callback	is	triggered	when	passing	a	booking	ID	for	an	already	existing	booking	to	the	modal.

You	may	wish	to	create	bookings	prior	to	the	user	arriving	at	the	payment	page	using	the	POST	/bookings	endpoint	and	then	include	the
ID	for	that	booking	in	the	input	with	class		.tmt_booking_id		or	keyed	with		booking_id		in	a	data	object.	The	booking	is	looked	up	via
the	GET	/bookings/ID	endpoint	and	the	response	is	passed	to	the	booking_exists	callback.

//	booking_exists

{

				author:	"24"

				channels:	84

				content:	""

				countries:	"GB"

				created:	"2019-08-12	10:29:15"

				currencies:	"USD"

				date:	"2020-05-12"

				email:	"john.smith@example.org"

				firstname:	"John"

				id:	2600

				modified:	"2019-08-12	10:29:15"

				pax:	0

				reference:	""

				status:	"draft"

				surname:	"Smith"

				title:	"Smith	|	john.smith@example.org"

				total:	999

				total_unpaid:	999

				transaction_ids:	[]

				trust_id:	"21-2600"

}

booking_error

This	callback	is	triggered	instead	of	the		booking_logged		or		booking_exists		callbacks	in	the	event	of	an	error	in	the	booking	data
provided.	The	error	message	is	output	to	the	modal	and	the	booking_error	callback	is	triggered	with	the	error	message	passed	as	the
single	argument	that	the	booking_error	callback	receives.

For	example,	the	channel	ID	supplied	corresponds	with	a	channel	that	has	GBP	as	its	base	currency,	but	the	booking	currency	is
supplied	as	USD.

{

				response:	code:	"rest_invalid_param"

				data:	{

								status:	400,	

								params:	{

												channels:	"Channel	ID	currency	does	not	match	nominated	currency."

								}

				}

				message:	"Invalid	parameter(s):	channels"

}

transaction_logged

Callbacks

33

https://api.trustmytravel.com/#faa3febb-c395-463e-8cef-5ca079b28835
https://api.trustmytravel.com/?version=latest#6f3cda34-ea50-4a1a-8118-2c2819c1dcd1


This	callback	is	triggered	when	the	user	has	successfully	completed	a	transaction.	It	includes	the	response	from	the	POST	/transactions
endpoint.	The	response	to	this	request	will	be	passed	as	the	single	argument	that	the	transaction_logged	callback	receives.

{

				3ds_response:	{}

				adjustments:	[]

				api_urls:	[]

				author:	"24"

				bin_number:	"411111"

				bookings:	[

								{

												id:	2605,	

												total:	999,	

												currencies:	"USD",	

												reference:	""}

				]

				card_types:	"visa"

				channels:	84

				content:	"Succeeded!"

				countries:	"US"

				created:	"2019-08-12	10:39:26"

				currencies:	"GBP"

				forex:	[]

				forex_rate:	""

				hash:	"44a256f2e5150dc1d0341feb6346cef685e0c0a05d179757ab282298f31a8bb8"

				id:	2606

				ip_address:	""

				last_four_digits:	"1111"

				linked_id:	0

				modified:	"2019-08-12	10:39:29"

				payee_email:	"matt.mb697@gmail.com"

				payee_name:	"Matthew	Bush"

				payee_surname:	"Bush"

				payment_ids:	[2607,	2608,	2609]

				payment_methods:	"credit-card"

				psp:	"spreedly"

				statement_batches:	"WEEK-33-1-2019-test"

				status:	"complete"

				title:	"John	Smith	|	john.smith@example.org	|	purchase"

				token:	"VXOcZHZR2wSeOxAvPEGoPeB9Avp"

				total:	830

				total_remaining:	830

				transaction_types:	"purchase"

				trust_id:	"21-2606"

}

transaction_failed

When	the	user	has	attempted	a	transaction,	but	it	has	been	rejected	by	the	card	issuing	bank,	the	response	from	the	POST	/transactions
endpoint	will	be	passed	as	the	single	argument	that	the	transaction_failed	callback	receives.

Example

{

				3ds_response:	{}

				adjustments:	[]

				api_urls:	[]

				author:	"24"

				bin_number:	"510510"

				bookings:	[

								{

												id:	2610,	

												total:	999,	

												currencies:	"USD",	

												reference:	""}

				]

Callbacks

34

https://api.trustmytravel.com/#96ff2a72-9476-4578-b8ce-2ab1820d2e54
https://api.trustmytravel.com/#96ff2a72-9476-4578-b8ce-2ab1820d2e54


				card_types:	"master"

				channels:	84

				content:	"Unable	to	process	the	purchase	transaction."

				countries:	"GB"

				created:	"2019-08-12	10:43:29"

				currencies:	"GBP"

				forex:	[]

				forex_rate:	""

				hash:	"cf6a7a4504568672f16101a342c67982ed42d9d3042a6c9a87bab93e0d29fcaa"

				id:	2611

				ip_address:	""

				last_four_digits:	"5100"

				linked_id:	0

				modified:	"2019-08-12	10:43:31"

				payee_email:	"john.smith@example.org"

				payee_name:	"John	Smith"

				payee_surname:	"Smith"

				payment_ids:	[2612]

				payment_methods:	"credit-card"

				psp:	"spreedly"

				statement_batches:	"WEEK-33-1-2019-test"

				status:	"failed"

				title:	"John	Smith	|	john.smith@example.org	|	purchase"

				token:	"VdOZCqLvFowUIfi2cZVQxfqLDqF"

				total:	830

				total_remaining:	0

				transaction_types:	"purchase"

				trust_id:	"21-2611"				

}

transaction_rejected
Deprecated

transaction_timeout
At	the	point	at	which	the	user	has	completed	their	credit	card	details	and	submitted	the	transaction,	the	transaction	process	is	in	motion.
Unless	there	is	an	issue	at	the	TMTProtects	side,	the	transaction	request	will	be	relayed	to	the	bank.	Should	a	timeout	occur	between
the	bank	responding	to	TMTProtects	or	TMTProtects	honouring	the	Payment	Modal	API	request,	an	error	message	is	displayed	on	the
modal	informing	the	user	that	there	was	a	timeout	but	payment	may	have	been	successful	and	informing	them	of	the	booking	ID	for	the
transaction.	The	transaction_timeout	callback	is	also	triggered	with	details	of	the	timeout	and	the	booking	ID	pertaining	to	the
transaction	supplied.

The	booking	can	be	looked	up	using	the	GET	/bookings/ID	endpoint.	The	response	will	include	an	array	of	linked	transactions	under	the
field		transaction_ids		the	last	value	in	this	array	will	pertain	to	the	most	recent	transaction.

The	transaction	can	then	be	looked	up	using	the	GET	/transactions/ID	endpoint	to	ascertain	if	it	was	successful	or	not.

{

				booking_id:	2622

				message:	"Request	timed	out"

				name:	"TimeoutError"

}

transaction_error
If	the	transaction	attempt	failed	due	to	connectivity	issues	with	the	card	issuing	bank	or	for	any	reason	other	than	being	rejected	for
anything	other	than	the	card	issuing	bank's	criteria,	the	transaction_error	callback	is	triggered	with	the	error	response	being	passed	as	the
single	argument

Callbacks

35

https://api.trustmytravel.com/?version=latest#6f3cda34-ea50-4a1a-8118-2c2819c1dcd1
https://api.trustmytravel.com/?version=latest#35fb4c46-36db-4d19-88ef-b6643c00c9fd


{

				name:	TypeError

				message:	Failed	to	fetch

}

modal_closed
Should	the	user	close	the	modal	at	any	stage	in	the	process,	the	modal_closed	callback	is	triggered	and	an	object	is	passed	as	the	single
argument

{

				message:	modal	closed

}

close_window_attempted
Should	the	user	close	attempt	to	close	their	browser	window	while	the	transaction	is	being	processed,	the	close_window_attempted
callback	is	triggered	and	an	object	is	passed	as	the	single	argument.	The	user	is	prompted	to	confirm	the	close	to	try	and	prevent	a
disconnection.

{

				message:	'User	attempted	to	close	browser	window	while	transaction	is	being	processed!'

}

Callbacks

36



Validating	Modal	Callback	Data

Hash	Verification

During	the	End	to	End	Process,	the	transaction_logged	or	transaction_failed	callbacks	would	have	called	with	the	transaction	response
passed	to	them.	Should	you	wish	to	validate	a	response,	you	will	need	to	obtain	the	values	for		id	,		status		and		total		as	well	as	the
channel	secret	for	the	channel	you	are	using.

From	there,	you	can	use	the		TmtAuthstring\Validate		class	on	the	TMT	Github	Page	following	the	example	shown.

Alternatively,	you	can	write	your	own	verification	method	based	on	the	example	below:

Example

$values	=	[

				'id'								=>	$id,

				'status'				=>	$status,

				'total'					=>	$total

];

$varString				=	implode('&',	$values);

$authString			=	hash('sha256',	$varString);

$validHash				=	hash('sha256',	$authString	.	$channel_secret);

if	(hash_equals($hash,	$validHash))	{

				//	Valid	hash.

};

API	Verification
The	"id"	can	be	used	to	verify	the	transaction	via	a	GET	/transactions/id	request	to	the	TMTProtects	API.

Validation

37

https://github.com/trustmytravel/TmtAuthstring
https://api.trustmytravel.com#35fb4c46-36db-4d19-88ef-b6643c00c9fd


Forex
In	order	to	display	prices	in	currencies	other	than	your	channel's	base	currency,	you	can	perform	a	GET	request	for	your	channel	as
shown	in	our	API	Documentation

As	shown	in	the	documentation,	and	below,	the	response	object	includes	a	field	named		forex_feed	.	This	contains	a		rates		object	that
contains	all	currencies	available	against	your	channel's	base	currency	and	the	rate	to	apply	to	your	base	amount	to	obtain	an	amount	in
that	currency.

Example
Your	channel	has	a	base	currency	of	EUR,	you	are	selling	a	product	for	EUR	99.99	and	you	wish	to	display	a	price	in	GBP.

Perform	a	GET	Request	for	the	channel		GET	{{url}}/wp-json/tmt/v2/channels/{{channel_id}}	

var	settings	=	{

				"url":	"{{url}}/wp-json/tmt/v2/channels/{{channel_id}}",

				"method":	"GET",

				"timeout":	0,

Forex

38

https://api.trustmytravel.com/?version=latest#39c6892a-1a3e-4e9a-b585-3a26648d7c45


};

Obtain		response.forex_feed.rates.GBP.rate		using	the	documentation	as	an	example,	this	would	be		0.93881	

$.ajax(settings).done(function	(response)	{

				var	rate	=	response.forex_feed.rates.GBP.rate;

});

Multiply	your	base	cost	of	EUR	99.99	by	the	rate:		99.99	*	0.93881	=	93.8716119	

var	paymentAmount	=	rate	*	baseAmount;

Round	to	the	nearest	cent	value	(rounding	down	from	.5	where	applicable)	to	get	GBP	93.87.

var	displayAmount	=	paymentAmount.toFixed(2);

Forex

39



Test	Credit	Cards
Use	the	values	below	to	test	the	various	payment	flows.	Use	any	valid	Year	/	Month	combination.
For	the	Challenge	and	3DS1	Fallback	flows,	you	will	be	shown	a	3DS	authentication	simulator.	The	password	for	this	simulator	is
	Checkout1!	

Credit	Card	Number CVV Flow Outcome

4485	0403	7153	6584 100 Frictionless	Flow Success

4485	0403	7153	6584 101 Frictionless	Flow Fail

4573	8231	6871	0907 100 Challenge	Flow Success

4573	8231	6871	0907 101 Challenge	Flow Fail

4484	0700	0003	5519^ 257 3DS1	fallback Success

4484	0700	0003	5519^ 258 3DS1	fallback Fail

5352151570003404^^ 100 No	3DS2 Success

5352151570003404^^ 101 No	3DS2 Fail

^Transaction	total	should	not	be	5000c	or	this	will	not	trigger.
^^Transaction	total	must	be	5000c	or	this	will	not	trigger

Test	Credit	Cards

40



Translations
The	TMTProtects	Payment	Modal	currently	supports	the	following	translations:

Language "lang"	option

Chinese	(Traditional) zhZH

English	(default) enGB

French frFR

German deDE

Italian itIT

Japanese jaJA

Kazakh kkKK

Korean koKO

Latvian lvLV

Portuguese ptBR

Romanian roRO

Russian ruRU

Spanish esES

Ukranian ukUK

Uzbek	(Tajik) uzUZ

Should	you	wish	to	contribute	a	translation,	please	supply	translations	for	the	fields	below	to	techsupport@trustmytravel.com.

Payment	Modal

{

				"form":	{

								"title":	"Payment	Details",

								"invoice":	"Invoice",

								"cc_no":	"Credit	Card	Number",

								"cvv":	"CVV",

								"expiry":	"Expiry	Date",

								"pay":	"Pay",

								"success":	"Payment	successful",

								"retry":	"Retry",

								"terms":	"This	site	uses	Trust	My	Travel	t/a	TMTProtects	to	facilitate	and	protect	your	payment	as	merchant	of	record.

	By	clicking	Pay,	you	agree	to	Trust	My	Travel’s	terms",

								"waitingForTransactionResult":	"Waiting	for	transaction	result...",

								"closeWarning":	"Don't	close	this	window	until	you	have	completed	the	transaction",

								"securityCheck":	"Loading	security	check",

								"failed":	"Payment	failed",

								"close":	"Close",

								"redirecting":	"Redirecting	to	payment	processor..."

				},

				"paymentStatus":	{

								"submitting":	"Submitting	Payment...",

								"contactingBank":	"Contacting	Bank...",

								"apologies":	"Apologies,	this	is	taking	longer	than	usual...",

								"stillWaiting":	"Still	waiting	for	a	response..."

				},

				"errors":	{

Translations

41

mailto:techsupport@trustmytravel.com


								"connecting":	"Payment	Service	Provider	unavailable",

								"timeout":	"Your	payment	attempt	has	timed	out,	but	may	have	been	successful.	Please	contact	the	site	admin	and	quote	

booking	ID	{{id}}"

				},

				"paymentMethods":	{

								"alipay":	"Alipay",

								"credit-card":	"Credit	Card",

								"dlocal":	"Installments",

								"giropay":	"Giropay",

								"ideal":	"iDEAL",

								"rapipago":	"Rapipago",

								"sofort":	"Sofort"

				},

				"dlocal":	{

								"noInstallments":	"No	installments",

								"monthlyInstallments":	"monthly	installments",

								"single":	"Single	installment",

								"singleFees":	"Single	installment	fees",

								"singleTotal":	"Single	installment	total",

								"TotalCost":	"Total	cost	of	plan"

				},

				"validation":	{

								"creditCard":	"Credit	card	number	entered	is	not	valid",

								"cvv":	"CVV	number	entered	is	not	valid",

								"expiry":	"Please	enter	a	valid	expiry	date",

								"futureExpiry":	"Please	enter	a	valid	future	dated	expiry	date",

								"document":	"Documento	Nacional	de	Identidad	(DNI)	or	Clave	Única	de	Identificación	Tributaria	(CUIT)	is	required"

				}

}

Email	Receipts

'subject'																			=>	'Trust	My	ID:	:trust_id',

'subject_refund'												=>	'Trust	My	ID:	:trust_id	Refund',

'subject_chargeback'								=>	'Trust	My	ID:	:trust_id	Chargeback',

'greeting'																		=>	'Dear	:Name',

'intro'																					=>	'This	email	confirms	your	booking	with	:member	is	protected	by	TrustProtects.Me',

'refund_intro'														=>	'A	refund	has	been	issued	on	your	booking	with	:member.',

'chargeback_intro'										=>	'We	have	received	a	chargeback	on	your	booking	with	:member.',

'booked_header'													=>	'Item	Booked	with:',

'item_header'															=>	'Item(s)	Ordered:',

'amount_header'													=>	'Amount	Paid:',

'amount_refund_header'						=>	'Amount	of	Refund:',

'amount_chargeback_header'		=>	'Amount	of	Chargeback:',

'important_header'										=>	'Important:',

'p1'																								=>	'Your	payment	is	only	protected	if	the	details	above	are	correct	and	it	is	important	that	you	c

heck	them	for	any	inaccuracies.	Any	inaccuracies	not	declared	within	7	days	of	receipt	of	this	email	will	invalidate	any	prote

ction.',

'p2'																								=>	'Please	quote	the	above	Trust	My	ID	in	any	correspondence	with	us	and	email	customer@trustprote

cts.me',

'p3'																								=>	'For	full	details	of	the	financial	protection	please	visit	https://www.trustprotects.me	and	vie

w	our	terms	at	https://www.trustprotects.me/terms',

'p4'																								=>	'TrustProtects.Me	is	a	division	of	Qubotic	Limited	which	includes	Trust	My	Travel	and	Trust	My	

Buy',

Translations

42



Troubleshooting
If	you	are	having	difficultly	integrating	the	Payment	Modal,	please	read	through	the	troubleshooting	guides	below.

Form	Implementation

Nothing	Happens
Form	Submits
Can't	Initialise	Modal
Required	Field	Errors
Token	is	Invalid
Token	is	Expired
Allocation	Errors
Payment	Fails	unexpectedly
Invalid	Data/Token

Nothing	Happens
You	are	confident	you	have	completed	the	integration,	you	visit	your	test	payment	page,	click	to	pay,	and	nothing	happens!

Please	check	the	following:

That	you	have	an	input	with	the	class		tmt_payee_name		and	a	value
That	you	have	an	input	with	the	class		tmt_payee_email		and	a	value

Note	that	if	either	or	both	of	these	inputs	are	visible,	then	a	style	attribute	would	be	attached	to	them	in	the	event	of	no	value	being
supplied.	E.g.

<input	name="payee_name"	type="text"	class="form-control	tmt_payee_name"	style="background:	yellow;">

If	you	have	set	either	or	both	of	these	inputs	to	hidden,	then	its	not	immediately	obvious	if	no	values	are	present.	It	is	recommended
that	you	enable	Debug	mode	if	this	is	the	case.	You	should	then	see	output	to	this	effect.

Form	Submits

Troubleshooting

43



You	are	confident	you	have	completed	the	integration,	you	visit	your	test	payment	page,	click	to	pay,	and	the	payment	form	submits
without	triggering	the	modal

Please	check	the	following

That	you	have	correctly	included	the	Payment	Modal	scripts
That	no	other	javascript	included	on	your	payment	page	is	triggering	errors	in	console

Init	Errors
If	you	do	not	init	the	modal	with	the	mandatory	options	for	the	implementation	you	require,	then	the	modal	will	be	triggered	as	per	the
screenshot	below	informing	you	which	mandatory	fields	are	missing.

This	error	would	be	resolved	by	passing	a	formId	and	path	to	the	modal	init	call,	for	example:

var	tmtPaymentModal	=	new	window.tmtPaymentModalSdk({

				path:	"tmt-test",

				formId:	"tmt-payment-form"

})

Required	Field	Errors
To	successfully	trigger	the	Payment	Modal,	required	data	must	be	present	and	correctly	referenced	depending	on	the	implementation
you	are	using:

Form	implementation	required	fields
Data	Object	implementation	required	fields

If	you	do	not	include	all	the	required	fields,	the	modal	will	trigger	with	a	error	output	to	indicate	the	missing	fields	similar	to	the	below.
If	you	have	debug	mode	enabled,	the	missing	fields	will	also	be	output	to	console.

Troubleshooting

44



Invalid	Token

To	identify	yourself	to	the	modal,	you	need	to	pass	it	a	valid	authstring.	Failure	to	do	this	will	result	in	output	as	per	the	screenshot
below.

Should	you	receive	this	error,	please	check	the	following:

Are	you	concatenating	the	fields	in	alphabetical	order	as	shown	in	the	examples?
Are	you	using	the	same	channel	ID	as	that	passed	in	the	form	or	data	object?
Are	you	using	the	base	currency	for	the	channel	with	the	ID	passed	in	the	form	or	data	object?
Are	you	salting	the	authstring	with	the	channel	secret	for	the	channel	with	the	ID	passed	in	the	form	or	data	object?
Have	you	used	the	same	timestamp	in	the	authstring	as	the	timestamp	which	is	appended	to	it?
If	you	are	using	additional	fields	in	the	authstring,	have	you	declared	them	in	the	Verify	Option?

Expired	Token

Troubleshooting

45



To	prevent	reuse	of	tokens,	they	are	only	valid	for	15	minutes.	In	order	to	prevent	reuse	of	expired	tokens,	a	timestamp	is	added	to	the
authstring	and	then	appended	to	it	so	that	a	duplicate	authstring	can	be	built	API	side	for	comparison.	If	you	fail	to	append	the
timestamp,	or	if	it	is	older	than	15	minutes,	you	will	receive	output	as	per	the	screenshot	below:

Should	you	receive	this	error,	please	check	the	followung:

Are	you	using	and	appending	the	same	timestamp?
Are	you	generating	a	timestamp	in	GMT?
Are	you	ouputting	your	timestamp	in	the	format	YYYYDDMMHIS?

Allocation	Errors

If	you	are	using	the	Data	Object	Implementation	and	including	Allocations,	you	may	receive	output	as	per	the	screenshot	below	after
having	successfully	triggered	the	modal	and	entered	credit	card	details:

Should	you	receive	this	error,	please	ensure	that	the	channel	that	is	incurring	charges	has	sufficient	funds	to	meet	those	charges.

For	example,	consider	a	channel	with	ID	=	23,	which	has	a	per	transaction	fee	of	USD	0.50	and	has	a	credit	card	percentage	of	3.5%
applied.	The	two	examples	below	would	result	in	too	little	being	available	to	meet	those	charges:

Troubleshooting

46



Example	One:	Channel	23	receives	allocation	and	incurs	charges

USD	2	is	allocated	to	Channel	23
Channel	23	is	nominated	as		charge_channel	
Charges	levied	against	Channel	23	would	be	USD	4	(3.5%	of	USD	100	=	USD	3.50	+	USD	0.50	per	transaction	fee)
USD	2	is	not	sufficient	to	cover	charges	of	USD	4,	error	is	returned.

{

				booking_id:	'0',

				channels:	2,

				currencies:	'USD',

				total:	'10000',

				...

				allocations:	[{

								channels:	23,

								currencies:	'USD',

								total:	200,

								operator:	'flat'

				}],

				charge_channel:	23

}

Example	Two:	Channel	23	is	master	channel	and	incurs	charges

USD	98	is	allocated	to	Channel	2
No		charge_channel		defined,	so	defaults	to	main	channel,	which	is	23.
Charges	levied	against	Channel	23	would	be	USD	4	(3.5%	of	USD	100	=	USD	3.50	+	USD	0.50	per	transaction	fee)
USD	2	remaining	after	allocating	USD	98	to	channel	2	is	not	sufficient	to	cover	charges	of	USD	4,	error	is	returned.

{

				booking_id:	'0',

				channels:	23,

				currencies:	'USD',

				total:	'10000',

				...

				allocations:	[{

								channels:	2,

								currencies:	'USD',

								total:	9800,

								operator:	'flat'

				}]

}

Payment	Failure

If	payments	are	failing	unexpectedly,	for	example	when	testing	with	credit	cards	that	should	be	passing,	please	listen	on	the
transaction_error	callback	as	this	should	give	you	feedback	on	where	you	are	going	wrong.	The	example	below	shows	a	transaction
attempt	that	has	failed	as	allocations	were	included	on	an	authorize	transactions.

Invalid	Data	Token

If	you	successfully	run	a	transaction	from	end	to	end,	but	the	transaction	fails	with		"content":	"Invalid	data/token."	,	then	you	have
triggered	the	modal	in	an	environment	that	does	not	match	that	of	the	channel	you	are	running	the	transaction	in.	Cards	are	tokenised	in
the	environment	specified	in	modal	instantiation.	API	requests	made	via	the	tokeniser	to	the	payment	gateway	are	made	in	the

Troubleshooting

47



environment	of	the	channel	(live	or	test).	If	a	channel	has	an	account_mode	of	"live"	and	the	modal	is	instantiated	with	environment
"test",	the	card	will	be	tokenised	in	the	test	token	environment	where-as	the	request	will	be	routed	via	the	live	environment.	No	token
will	exist	in	the	live	environment	so	the	response	of	"Invalid	data/token"	will	be	returned,	and	the	transaction	will	fail.

Troubleshooting

48



Appendix

ISO	3166-1	alpha-2	Country	Codes

CODE Country

AD Andorra

AE United	Arab	Emirates

AF Afghanistan

AG Antigua	and	Barbuda

AI Anguilla

AL Albania

AM Armenia

AO Angola

AQ Antarctica

AR Argentina

AS American	Samoa

AT Austria

AU Australia

AW Aruba

AX Åland	Islands

AZ Azerbaijan

BA Bosnia	and	Herzegovina

BB Barbados

BD Bangladesh

BE Belgium

BF Burkina	Faso

BG Bulgaria

BH Bahrain

BI Burundi

BJ Benin

BL Saint	Barthélemy

BM Bermuda

BN Brunei	Darussalam

BO Bolivia	(Plurinational	State	of)

BQ Bonaire,	Sint	Eustatius	and	Saba

BR Brazil

BS Bahamas

Appendix

49



BT Bhutan

BV Bouvet	Island

BW Botswana

BY Belarus

BZ Belize

CA Canada

CC Cocos	(Keeling)	Islands

CD Congo,	Democratic	Republic	of	the

CF Central	African	Republic

CG Congo

CH Switzerland

CI Côte	d'Ivoire

CK Cook	Islands

CL Chile

CM Cameroon

CN China

CO Colombia

CR Costa	Rica

CU Cuba

CV Cabo	Verde

CW Curaçao

CX Christmas	Island

CY Cyprus

CZ Czechia

DE Germany

DJ Djibouti

DK Denmark

DM Dominica

DO Dominican	Republic

DZ Algeria

EC Ecuador

EE Estonia

EG Egypt

EH Western	Sahara

ER Eritrea

ES Spain

ET Ethiopia

Appendix

50



FI Finland

FJ Fiji

FK Falkland	Islands	(Malvinas)

FM Micronesia	(Federated	States	of)

FO Faroe	Islands

FR France

GA Gabon

GB United	Kingdom	of	Great	Britain	and	Northern	Ireland

GD Grenada

GE Georgia

GF French	Guiana

GG Guernsey

GH Ghana

GI Gibraltar

GL Greenland

GM Gambia

GN Guinea

GP Guadeloupe

GQ Equatorial	Guinea

GR Greece

GS South	Georgia	and	the	South	Sandwich	Islands

GT Guatemala

GU Guam

GW Guinea-Bissau

GY Guyana

HK Hong	Kong

HM Heard	Island	and	McDonald	Islands

HN Honduras

HR Croatia

HT Haiti

HU Hungary

ID Indonesia

IE Ireland

IL Israel

IM Isle	of	Man

IN India

IO British	Indian	Ocean	Territory

IQ Iraq

Appendix

51



IR Iran	(Islamic	Republic	of)

IS Iceland

IT Italy

JE Jersey

JM Jamaica

JO Jordan

JP Japan

KE Kenya

KG Kyrgyzstan

KH Cambodia

KI Kiribati

KM Comoros

KN Saint	Kitts	and	Nevis

KP Korea	(Democratic	People's	Republic	of)

KR Korea,	Republic	of

KW Kuwait

KY Cayman	Islands

KZ Kazakhstan

LA Lao	People's	Democratic	Republic

LB Lebanon

LC Saint	Lucia

LI Liechtenstein

LK Sri	Lanka

LR Liberia

LS Lesotho

LT Lithuania

LU Luxembourg

LV Latvia

LY Libya

MA Morocco

MC Monaco

MD Moldova,	Republic	of

ME Montenegro

MF Saint	Martin	(French	part)

MG Madagascar

MH Marshall	Islands

MK North	Macedonia

Appendix

52



ML Mali

MM Myanmar

MN Mongolia

MO Macao

MP Northern	Mariana	Islands

MQ Martinique

MR Mauritania

MS Montserrat

MT Malta

MU Mauritius

MV Maldives

MW Malawi

MX Mexico

MY Malaysia

MZ Mozambique

NA Namibia

NC New	Caledonia

NE Niger

NF Norfolk	Island

NG Nigeria

NI Nicaragua

NL Netherlands

NO Norway

NP Nepal

NR Nauru

NU Niue

NZ New	Zealand

OM Oman

PA Panama

PE Peru

PF French	Polynesia

PG Papua	New	Guinea

PH Philippines

PK Pakistan

PL Poland

PM Saint	Pierre	and	Miquelon

PN Pitcairn

PR Puerto	Rico

Appendix

53



PS Palestine,	State	of

PT Portugal

PW Palau

PY Paraguay

QA Qatar

RE Réunion

RO Romania

RS Serbia

RU Russian	Federation

RW Rwanda

SA Saudi	Arabia

SB Solomon	Islands

SC Seychelles

SD Sudan

SE Sweden

SG Singapore

SH Saint	Helena,	Ascension	and	Tristan	da	Cunha

SI Slovenia

SJ Svalbard	and	Jan	Mayen

SK Slovakia

SL Sierra	Leone

SM San	Marino

SN Senegal

SO Somalia

SR Suriname

SS South	Sudan

ST Sao	Tome	and	Principe

SV El	Salvador

SX Sint	Maarten	(Dutch	part)

SY Syrian	Arab	Republic

SZ Eswatini

TC Turks	and	Caicos	Islands

TD Chad

TF French	Southern	Territories

TG Togo

TH Thailand

TJ Tajikistan

Appendix

54



TK Tokelau

TL Timor-Leste

TM Turkmenistan

TN Tunisia

TO Tonga

TR Turkey

TT Trinidad	and	Tobago

TV Tuvalu

TW Taiwan,	Province	of	China

TZ Tanzania,	United	Republic	of

UA Ukraine

UG Uganda

UM United	States	Minor	Outlying	Islands

US United	States	of	America

UY Uruguay

UZ Uzbekistan

VA Holy	See

VC Saint	Vincent	and	the	Grenadines

VE Venezuela	(Bolivarian	Republic	of)

VG Virgin	Islands	(British)

VI Virgin	Islands	(U.S.)

VN Viet	Nam

VU Vanuatu

WF Wallis	and	Futuna

WS Samoa

YE Yemen

YT Mayotte

ZA South	Africa

ZM Zambia

ZW Zimbabwe

Appendix

55


	Overview
	Channel Data
	Site Path
	Authorization
	Options
	Alternative Payment Methods
	Implementations
	Payment Form
	Data Object
	Allocations

	Preloading Bookings

	Callbacks
	Validation
	Forex
	Test Credit Cards
	Translations
	Troubleshooting
	Appendix

